Friday, October 29, 2010

Indefinite hiatus

This blog is put on indefinite hiatus.

Friday, October 1, 2010

Gone for two weeks

The blog will not be updated the coming two weeks due to absence of its owner.

Paper watch: recent imaging papers

A few recent papers (some of them open access).

First, via Austin's imaging blog, a history of confocal microscopy at Biotechniques.com.

At NanoLetters: "Very Black Infrared Detector from Vertically Aligned Carbon Nanotubes and Electric-Field Poling of Lithium Tantalate". From the abstract:
Vertically aligned multiwall carbon nanotubes were grown by water-assisted chemical vapor deposition on a large-area lithium tantalate pyroelectric detector. The processing parameters are nominally identical to those by which others have achieved the “world’s darkest substance” on a silicon substrate. The pyroelectric detector material, though a good candidate for such a coating, presents additional challenges and outcomes. After coating, a cycle of heating, electric field poling, and cooling was employed to restore the spontaneous polarization perpendicular to the detector electrodes. The detector responsivity is reported along with imaging as well as visible and infrared reflectance measurements of the detector and a silicon witness sample. We find that the detector responsivity is slightly compromised by the heat of processing and the coating properties are substrate dependent. However, it is possible to achieve nearly ideal values of detector reflectance uniformly less than 0.1% from 400 nm to 4 μm and less than 1% from 4 to 14 μm.
And finally, seen at Nature Photonics, an open access paper at the Virtual Journal for Biomedical Optics: "Wavefront image sensor chip". The abstract reads:
We report the implementation of an image sensor chip, termed wavefront image sensor chip (WIS), that can measure both intensity/amplitude and phase front variations of a light wave separately and quantitatively. By monitoring the tightly confined transmitted light spots through a circular aperture grid in a high Fresnel number regime, we can measure both intensity and phase front variations with a high sampling density (11 µm) and high sensitivity (the sensitivity of normalized phase gradient measurement is 0.1 mrad under the typical working condition). By using WIS in a standard microscope, we can collect both bright-field (transmitted light intensity) and normalized phase gradient images. Our experiments further demonstrate that the normalized phase gradient images of polystyrene microspheres, unstained and stained starfish embryos, and strongly birefringent potato starch granules are improved versions of their corresponding differential interference contrast (DIC) microscope images in that they are artifact-free and quantitative. Besides phase microscopy, WIS can benefit machine recognition, object ranging, and texture assessment for a variety of applications.